Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy.

نویسندگان

  • David A Benaron
  • Ilian H Parachikov
  • Shai Friedland
  • Roy Soetikno
  • John Brock-Utne
  • Peter J A van der Starre
  • Camran Nezhat
  • Martha K Terris
  • Peter G Maxim
  • Jeffrey J L Carson
  • Mahmood K Razavi
  • Hayes B Gladstone
  • Edgar F Fincher
  • Christopher P Hsu
  • F Landon Clark
  • Wai-Fung Cheong
  • Joshua L Duckworth
  • David K Stevenson
چکیده

BACKGROUND The authors evaluated the ability of visible light spectroscopy (VLS) oximetry to detect hypoxemia and ischemia in human and animal subjects. Unlike near-infrared spectroscopy or pulse oximetry (SpO2), VLS tissue oximetry uses shallow-penetrating visible light to measure microvascular hemoglobin oxygen saturation (StO2) in small, thin tissue volumes. METHODS In pigs, StO2 was measured in muscle and enteric mucosa during normoxia, hypoxemia (SpO2 = 40-96%), and ischemia (occlusion, arrest). In patients, StO2 was measured in skin, muscle, and oral/enteric mucosa during normoxia, hypoxemia (SpO2 = 60-99%), and ischemia (occlusion, compression, ventricular fibrillation). RESULTS In pigs, normoxic StO2 was 71 +/- 4% (mean +/- SD), without differences between sites, and decreased during hypoxemia (muscle, 11 +/- 6%; P < 0.001) and ischemia (colon, 31 +/- 11%; P < 0.001). In patients, mean normoxic StO2 ranged from 68 to 77% at different sites (733 measures, 111 subjects); for each noninvasive site except skin, variance between subjects was low (e.g., colon, 69% +/- 4%, 40 subjects; buccal, 77% +/- 3%, 21 subjects). During hypoxemia, StO2 correlated with SpO2 (animals, r2 = 0.98; humans, r2 = 0.87). During ischemia, StO2 initially decreased at -1.3 +/- 0.2%/s and decreased to zero in 3-9 min (r2 = 0.94). Ischemia was distinguished from normoxia and hypoxemia by a widened pulse/VLS saturation difference (Delta < 30% during normoxia or hypoxemia vs. Delta > 35% during ischemia). CONCLUSIONS VLS oximetry provides a continuous, noninvasive, and localized measurement of the StO2, sensitive to hypoxemia, regional, and global ischemia. The reproducible and narrow StO2 normal range for oral/enteric mucosa supports use of this site as an accessible and reliable reference point for the VLS monitoring of systemic flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a visible-light spectroscopy clinical tissue oximeter.

We develop a clinical visible-light spectroscopy (VLS) tissue oximeter. Unlike currently approved near-infrared spectroscopy (NIRS) or pulse oximetry (SpO2%), VLS relies on locally absorbed, shallow-penetrating visible light (475 to 625 nm) for the monitoring of microvascular hemoglobin oxygen saturation (StO2%), allowing incorporation into therapeutic catheters and probes. A range of probes is...

متن کامل

The use of visible light spectroscopy to measure tissue oxygenation in free flap reconstruction.

The loss of a free flap is a feared complication for both the surgeon and the patient. Early recognition of vascular compromise has been shown to provide the best chance for flap salvage. The ideal monitoring technique for perioperative free flap ischemia would be noninvasive, continuous, and reliable. Visible light spectroscopy (VLS) was evaluated as a new method for predicting ischemia in mic...

متن کامل

Pulse oximetry: theory and applications for noninvasive monitoring.

Noninvasive measurement of arterial oxygen saturation (SaO2) by pulse oximetry is widely acknowledged to be one of the most important technological advances in monitoring clinical patients. Pulse oximeters compute SaO2 by measuring differences in the visible and near infrared absorbances of fully oxygenated and deoxygenated arterial blood. Unlike clinical blood gas analyzers, which require a sa...

متن کامل

Esophageal saturation during antegrade cerebral perfusion: a preliminary report using visible light spectroscopy.

BACKGROUND Visible light spectroscopy (VLS) is newer technology that measures real-time tissue oxygenation. It has been validated in detecting mucosal ischemia in adults. During complex neonatal heart surgery, antegrade cerebral perfusion (ACP) maintains cerebral saturation. Whether ACP maintains peripheral tissue perfusion in humans is not known. METHODS Five patients undergoing neonatal ope...

متن کامل

Noninvasive tissue oximetry for flap monitoring: an initial study.

The ideal monitoring tool to evaluate free flap success should be noninvasive, continuous, and reliable. A new device, the ViOptix Tissue Oximeter (ODISsey) based on near-infrared spectroscopy was evaluated in 30 patients undergoing autologous tissue perforator free flap breast reconstruction with continuous monitoring of the flap during elevation, transfer, and the postoperative period. The de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 100 6  شماره 

صفحات  -

تاریخ انتشار 2004